Bridge Condition Assessment Using Remote Sensors

Michigan Technological University
Colin Brooks – Co-Principal Investigator
cnbrooks@mtu.edu
Dr. Tess Ahlborn, P.E., Principal Investigator
tess@mtu.edu
Michigan Bridge Conference, March 23, 2011

USDOT/RITA Commercial Remote Sensing and Spatial Information Technologies Program
Program Manager: Caesar Singh

Motivation
National Need

Bridge Condition in the U.S. - $150B to repair today

Deteriorated Bearing
Settlement
Deck Section Loss
Deteriorated Concrete Element

Structural Health Monitoring

- Traditional Inspection Techniques
 - Visual, chain drag, half-cell potential, accelerometers
- Advanced Monitoring Techniques
 - GPR, impact echo, fiber optics, thermal IR, ultrasonic
 - Wireless remote monitoring
- Remote Sensing: Non-contact data collection
 - “the collection of data about an object, area, or phenomenon from a distance with a device that is not in contact with the object.”
Structural Health Monitoring

- Remote Sensing for Bridges
 - Consider commercially available technologies
 - Monitor and assess condition, enhance inspection
 - At a distance
 - Without stopping traffic or closing lanes

Commercial Sensor Evaluation Report

Evaluated twelve RS technologies for Bridge Condition Assessment – based on top priorities

Performance metric ranking

- Commercial availability
- Sensitivity of measurement: resolution
- Cost: capital, operational
- Ease of pre-collection prep: structure, equip
- Ease of data collection and operation
- Complexity of analysis
- Stand-off distance rating
- Traffic Disruption

Written for bridge engineers – Available on website

Top Priorities / Challenges

<table>
<thead>
<tr>
<th>Location</th>
<th>“Top 10” Priorities/Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck Surface</td>
<td>Map cracking, Scaling, Spalling, Delaminations (through surface cracks), Expansion Joint External Issues</td>
</tr>
<tr>
<td>Deck Subsurface</td>
<td>Scaling, Spalling, Delaminations , Expansion Joint Internal Issues, Corrosion, Chloride Ingress</td>
</tr>
<tr>
<td>Girder Surface</td>
<td>Structural Steel and Structural Concrete Cracking, Paint Condition, Steel or Concrete Section Loss</td>
</tr>
<tr>
<td>Girder Subsurface</td>
<td>Structural Concrete Cracking, Concrete Section Loss, Chloride Ingress, Prestress Strand Breakage</td>
</tr>
<tr>
<td>Global Metric</td>
<td>Bridge Length, Settlement, Transverse Movement, Vibration, Surface Roughness</td>
</tr>
</tbody>
</table>
Commercial Sensor Evaluation Report: Promising Technologies

- 3-D Optics including Photogrammetry
- Thermal Infrared
- Digital Image Correlation
- Radar including SAR and InSAR
- Street-view Style Photography
- Satellite Imagery and Aerial Photography
- LiDAR

Field Inspection of Bridges – shadowed bridge inspectors for various bridge types to better understand how these technologies can be practically implemented for enhancing inspections
3-D Optics – Field Testing

- Calculating volume of spall (dev. algorithm)
- Able to calculate volume for difficult to reach (tall) locations

Thermal IR

Definition: Measure radiant temperature of concrete by thermal infrared camera (anomalies interrupt the heat transfer through the concrete). Delaminations appear as hot spots.

Current Practice:
- ASTM D 4788: thermal IR test method, equipments and environmental conditions for detecting delamination in concrete bridge decks (80-90% efficient)
- Thermal IR training for bridge inspectors in some state DOTs

Factors that can influence the Thermal IR image:

- Different materials on the surface:
 - Dirt
 - Moisture
 - Staining
- Environmental effects:
 - Ambient temperature (ASTM D 4788 – 32°F)
 - Humidity
 - Solar Loading (consistent)
 - Wind speed (ASTM D 4788 – 10mph)
- Deck Overlay type:
 - Low slump concrete overlay
 - Asphalt concrete overlay
 - HPC overlay
- Location of delaminated area:
 - Deck (1-3 in depth)
 - Soffit
 - Girder

Progress: Laboratory demonstrations to investigate surface and subsurface defects

- Cold slabs were brought in the lab which has significantly higher temperature than outside and thermal IR images were taken inside the lab which had almost steady environmental condition.

Specimen with simulated defects

Thermal IR Laboratory Setup

Thermal IR Image
Digital Image Correlation (DIC)

Definition: technique consisting of correlating pixels on optical images to determine variations

Proposed Application: Global response (movement, settlement, vibration); 3D models; Exploring for non-contact use

Currently: using SLR cameras on specimens and process images in computer software algorithms such as MATLAB

Digital Image Correlation (DIC) – Initial Testing

- Used for measuring displacements on a steel beam with fiducial marks (pattern)
- Images from Digital SLR camera are processed through MATLAB
- From translation of fiducial marks, the beam deflection is measured
 - Potential measurement of beam vibrations (dynamic measurement)
- Can be presented easily graphically

Digital Image Correlation (DIC) - Planned

- Compare experimental demonstrations using conventional measurement techniques and finite element analysis (FEA)
 - Bridge Pylons and W-Shape steel samples for testing
 - FEA modeling on testing frame and specimens for DIC comparison
- Field demo for global behavior

Imaging GPR - Synthetic Aperture Radar (SAR)

Definition: Synthetic Aperture Radar (SAR): Coherently process RF backscattering measurements from a moving radar to produce a 2-D (or 3-D) spatial image of scene reflectivity. Low frequency radar is used to penetrate surfaces. Subsurface reflections correspond to layer and/or defects

Currently: using wideband, low frequency commercially-available radar to investigate detectability of subsurface structure and defects
Imaging GPR - Synthetic Aperture Radar (SAR)

Current Practice: Ground Penetrating Radar like PERES (Precision Electromagnetic Roadway Evaluation System)
- Short pulse
- Slow (3D scan)
- Expensive
- Calibration
- Antenna/Ground Impedance matching
- First Surface cancellation

MTRI Approach: using wideband, low frequency commercially-available radar to investigate detectability of subsurface structure and defects
- Fast (2D scan)
- SAR Processing
- Advanced Signal/Image Processing Techniques
- Low Cost

Proposed Application: Mapping bridge surface/sub-surface features; characterize/locate defects (spalling, cracks, delaminations, etc.)

Interferometric SAR (InSAR)

Definition: InSAR exploits phase differences between 2 or more SAR images to estimate height of features. Comparison from two time periods can detect changes in geometry and/or position

Current Practice: Aerial InSAR frequently used to create 3-D surfaces (Digital Elevation Models); land settlement for large areas (InterMap data)

Proposed Application: Bridge dynamics, vibration, and strain; bridge stiffness; elevation surfaces (DEM); bridge settlement; global changes in position.

Imaging GPR – Next Steps

- Perform controlled field tests
 - Box beams: interior defects
 - Quantify subsurface spall
- Develop algorithms to enhance the detectability of and characterize defects in radar imagery in context of DSS
- Advanced Signal/Image Processing Techniques
 - Translate “Blobology” into end user products in DSS
 - Use data from existing GPR systems

StreetView-Style Photography

Definition: Contiguous collection of geo-located photographs taken from the ground, especially where the photographs have been projected into a continuous 360-degree viewing environment (like Google StreetView).

Current Practice: StreetView used by public for viewing areas of interest; private firms doing similar high-res 3-D scans of cities for inventory

Proposed Application: Damaged or missing expansion joint seals or plating, cracks and spalls near expansion joints, map cracking, scaling, spalling, and delaminations – testing use for bridges

StreetView-Style Photography

- Low-cost way of creating GPS-tagged photos of top, underside of bridge usable in GIS, Google Earth
- Could be deployable by MDOT as needed as part of photo logging
- “Gigapan” ultra-high res bridge inventory photos as well

Satellite Imagery and Aerial Photography

Definition: Any satellite imagery and aerial photography in the visible and infrared ranges with sufficient resolution that can be used to remotely assess deck surface conditions

Current Practice: Some applications for assessment of larger crack density (>1/4”); general views of areas along & near transportation infrastructures

Proposed Application: Use high-resolution imagery to calculate indices of deck surface condition, esp. cracking and spalling. We will build from TARUT Study index of road sufficiency calculations via satellite imagery.

StreetView-Style Photography

- Can use high-res photography to automate assessment of spalling amounts
- Calculating % spalled by area:
 - Ex: 6.4% spalled, 2.68 sq. ft (dev. algorithm)

LiDAR

- **Current practice example:** UNCC team funded by USDOT-RITA – LiDAR lead – bridge clearance assessment
- **Current Study:** Assessing methods of integrating bridge clearance data into Decision Support System
- Michigan Tech’s deployable “LiDAR car”
- Gathering 3-D LiDAR point cloud of example bridges in March/April – 3-D inventory of bridge + photos
Remote Sensing: Promising Technologies

- 3-D Optics including Photogrammetry
- Thermal Infrared
- Digital Image Correlation
- Radar including SAR and InSAR
- Street-view Style Photography - Bridgeviewer
- Satellite Imagery and Aerial Photography
- LiDAR

Decision Support System – key attributes

- DSS needs to be able to integrate, interpret, and present data that is usable by non-experts
- Extract features of interest and indicators of bridge condition from remote sensing and other data
- Compare remote sensing results to expected / normal results and detect anomalous results, especially change (based on previously-collected data or modeled results)
- Should be accessible in the field (durable tablet) and available for mission planning and repair prioritization beforehand
- Needs example data to produce most usable, practical DSS that meets needs of bridge condition community
- Building from lessons learned, interface inspiration from Phase I/II UNCC team – wide survey of DOTs and DSS needs

Decision Support System – under development

Current design:
- Access to Bridge Operations tools (in the field)
- Access to Bridge Condition data in GIS format
- Access to remote sensing results – mission planning & in the field
- Access to existing mapping tools
- Accessible via ruggedized tablets
Decision Support System – under development

- New remote sensing data, geotagged photos, existing mapping tools, algorithm analysis results, & integration with existing bridge condition data – will be made available through a GIS web mapping interface part of the DSS

Field Demo on 2 Bridges – Summer 2011

- Criteria
 - Similar type bridges, condition: bad and ugly
 - Representative of high interest problems
 - Decks – condition, repairs, no overlays
 - Bridge with significant existing info. (e.g. inspections reports, historical data for good ground truthing)
 - Accessibility (highway over highway) preferred; distance to AA
 - Concurrent MDOT inspection data collection (scoping)

 - Special set of bridges for particular challenges (e.g. settlement)

Decision Support System – ruggedized field tablet

- Access to bridge operations data in the field would be useful
- Data & DSS access tools
- Rugged, internet-capable, relatively inexpensive tablets now available
- Ex: iPad, Galaxy Tab
- Interest from USDOT as practical tools

Field Activity Planning:

- Anticipated Outcomes
 - Technology/sensor performance vs. expected measures and limitations
 - Specific sensor observations to feed the DSS
 - Lessons learned with respect to all field demos, practical considerations for implementation
 - Identification of redundancies
Goal of Assessment Task

- Assess the potential for commercially available remote sensors to enhance condition monitoring of critical infrastructure (i.e., bridges) cost effectively
 - Compare marginal costs of employing sensor technologies investigated to the marginal enhancements that they provide

Effectiveness

Low Cost

High Cost

SHM - Overview
Remote Sensing
In-Progress
Wrap-up

Summary

Examples:
- 3-D Optics → spalls
- Thermal IR → delaminations
- Digital IC → bridge settlement
- Radar → loss in cross-section
- StreetView Photo → missing seal
- Satellite Imagery → deck condition

Development of Anomaly Detection Algorithm
Decision Support Integration
Sensor Selection and Deployment
Field Demonstration

Acknowledgements

- USDOT – Research and Innovative Technology Administration
 - Commercial Remote Sensing and Spatial Information Program Manager: Caesar Singh
 - Cooperative Agreement #DTOS59-10-H-00001

- Project Partners
 - Michigan Department of Transportation
 - Michigan Tech Transportation Institute
 - Michigan Tech Research Institute
 - Center for Automotive Research

- Technical Advisory Council

Project Team / Disclaimer

- Project Team Members: MTTI + MTRI + CAR
 - Tess Ahlborn
 - Devin Harris
 - Larry Sutter
 - Bob Shuchman
 - Colin Brooks
 - Joe Burns
 - Chris Roussi
 - Arthur Endsley
 - Khaterah Vaghefi
 - Ben Hart
 - Renee Oats
 - Rick Dobson
 - Darrin Evans
 - Jim Ebling
 - Richard Wallace
 - Mike Forster
 - Ryan Hoensheid
 - Kiko de Melo e Silva
 - John Valenzuela
 - Joel LeBlanc
 - Andrew Leonard
 - Shazeb Quadir
 - Christina Nolte
 - Pam Hannon
 - Michelle Wienert
 - Kirk Scarbrough

DISCLAIMER: The views, opinions, findings and conclusions reflected in this presentation are the responsibility of the authors only and do not represent the official policy or position of the USDOT/RITA, or any State or other entity.
Contact Information

Tess Ahlborn, Ph.D., P.E. – Principal Investigator
Director, Center for Structural Durability
Michigan Tech Transportation Institute
Associate Professor, Civil and Environmental Eng.
Michigan Technological University
1400 Townsend Drive Houghton, MI 49931
906-487-2625; tess@mtu.edu

www.mtti.mtu.edu/bridgecondition/